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Figure 1: Neighbors for convolution from vertices onto edge pq.
Left) Internal edge, Right) Boundary edge.

1 Alternative Convolution adapted from [HHF∗19]

Prior to the convolution operator presented in the paper, we ex-
perimented with a convolution operator inspired by the edge based
convolution from [HHF∗19]. It does not perform as well as the con-
volution operators we proposed in this work but we include it here
as a baseline. In the result section this is referred to as V 4. Let’s say
the mesh consists of V vertices and E edges, where each vertex has
cin features and we want to do a convolution where each vertex has
cout features. Each convolution performs the following operations:

1. For each edge, compute 4 order invariant features based on its
neighboring vertices and produce an intermediate tensor of size
cin×E×4.

2. Do a 2D convolution, where the kernel size is 1 x 4, no padding,
stride 1, with cin input channels and cout output channels, to
produce an image of size cout x E x 1, for which we drop the
last dimension of the tensor.

3. For each vertex, aggregate the features from the surrounding
edges by averaging.

For an edge (p,q), whose opposite vertices are r and s, as shown
in Figure 1, we compute 4 order invariant features as follows,
( fp + fq, | fp− fq|, fr + fs, | fr− fs|), where the operations are done
componentwise. For boundary edges, where s is -1 indicating no
neighbor, we either use fs = 0, "zero padding" or fs = fr, "same
padding". The convolution is efficiently implemented with General
Matrix to Matrix Multiplications (GEMMs).

2 Details about MeshCNN and Spiral++ experiments

We compare MeshCNN [HHF∗19] and Spiral++ [GCBZ19] with
our network for the Pose to Cloth problems. Our network is an
encoder-decoder architecture of the form DxD2xD4xD5D4x for var-
ious values of x. The result is shown in Table 1.

We modify the code of MeshCNN [HHF∗19] from
https://github.com/ranahanocka/MeshCNN and Spiral Net++
[GCBZ19] https://github.com/sw-gong/spiralnet_plus to compare
with our work. The details will be discussed in this section.

The encoder-decoder variation of MeshCNN [HHF∗19] takes in-
put and produces output on edges, which is not directly compati-
ble with our problem. Therefore, we prepend a first layer that pro-
duces edge features from vertex features. Say an edge’s endpoints
are vertices p and q with features fp and fq, the edge features are
computed as ( fp + fq, | fp− fq|). We also append a last layer that
produces vertex features by averaging from the surrounding edges.
We also use L1 as the loss function. For the pants mesh with 12064
edges, we use the pool sizes of 1800, 1350, 780. From a prelimi-
nary test, the last pool size can’t be smaller than 780, as otherwise,
the code sometimes reports that it can’t collapse edges and crashes.
We set the number of channels of convolution layers to [c,2c,4c,8c]
where c is the smallest value such that

UMeshCNN(d)≥M, (1)

where UMeshCNN(d) is the number of learnable weights of the
MeshCNN network when the number of channels of the convo-
lution layers are set as above and M is the number of learnable
weights of our network that the MeshCNN network is compared
against. For each case, we run experiments with the number of
residual blocks 1, 2, and 3, each with the number of channels com-
puted as above, and report the lowest training and testing errors. We
train for 200 epochs and the other parameters are left as default. We
cannot however, run the code on the tank-female mesh with 43308
edges as the program ran out of memory on our 16GB GPU, no
matter what parameters we tried for the pool sizes, even when the
batch size is 1.

For Spiral Net++ [GCBZ19], we modify the code to use our
dataset and output the displacements that minimize the L1 error.
We set the number of channels of the convolution layers to be
[c,c,c,2c] where c is smallest value such that

USpiralNet++(d)≥M, (2)

where USpiralNet++(d) is the number of learnable weights of the
SpiralNet++ network when the number of channels of the convo-
lution layers are set as above and M is the number of learnable
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weights of our network that the SpiralNet++ network is compared
against.

As in their default choice, the number of channels only doubled
at the innermost layer. For each case, we run experiments with the
number of latent channels of 16, 64, 256, 1024 and report the lowest
train and test errors. We also need to reduce the learning rate to
10−4 as the default choice of 10−3 diverges in some cases. We also
need to reduce the batch size to 8 for the cases when x = 80, as the
default choice of 32 runs out of memory. We then run the training
for 200 epochs and other parameters are left at their default values.
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Table 1: Errors of various convolutions for the upsampling for the pants and tank-female mesh for various networks. Our proposed ring
based (RC) and ellipse based (EC) convolutions (RC) for various filter length, specified by the subscript are shown. We use the encoder-
decoder architecture DxD2xD4xD5D4x for various x. Error is specified as training / testing average L1 error per vertex per degree of freedom
×10−3. We compare against previous work MeshCNN(MeshcNN) [HHF∗19] and SpiralNet++(Spiral++) [GCBZ19] where we choose the
network parameters so that the number of learnable weights are as close as possible but greater than ours. We also include the errors when
using our network but with the convolution replaced by alternatives. V4 refers to the vertex convolution adapted from [HHF∗19] as stated
in the appendix, SP and SPD are the spiral convolution [BBP∗19, GCBZ19]. The cells highlighted in green/yellow show the configurations
with lowest training/testing errors for each x and filter size.

Table 2: Errors for various architectures of the encoder-decoder network with skip connection using RC13, EC13, SP13 and SPD13 con-
volutions with either average or max pooling for the tank-female mesh. Error is specified as training / testing L1 error ×10−3. The cells
highlighted in green/yellow show the convolution with lowest training/testing errors for each architecture.

Table 3: Errors when training a single network D62D124D248DD248D3D248 with RCmax
13 with data from 1 to 10 meshes. As expected, the error

tends to increase as the number of meshes used for training grows, but they still remain relatively low. The result shows that our network
architecture allows for the possibility of upsampling multiple meshes with a single network.
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Table 4: Errors for various architectures of decoder network using RC13, EC13, SP13 and SPD13 convolutions with either average or max
pooling for the dress2 mesh for the pose to cloth problem. Error is specified as training / testing L1 error times 10−3. The cells highlight in
green/yellow show the convolution with lowest training/testing errors for each architecture.
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